

Integrated Science Instrument Module (ISIM)

Presentation to the US Community Instrument Concept Study Teams
14 October 98

Matthew Greenhouse (GSFC) 301 286-0596 matt@stars.gsfc.nasa.gov

A NASA Origins Program Mission

ISIM Development

- Programmatics
 - Instrument acquisition plan
- US community instrument concept studies
- Engineering
 - GSFC baseline ISIM feasibility study
 - ISIM technology development

A NASA Origins Program Mission

Science Instrument Procurement Rationale

- concept recomendation by non-advocate review board
 - science driven
 - convened by NASA HQ
- close concept trade early to enable system trades to proceed
 - thermal requirements
 - ISIM technical budgets
- focus technology development spending to retire risk early
- enable well specified "apples to apples" competitive procurement
 - well focused proposals
 - high fidelity selection
- enable wide field of offerors
 - participation in pre-phase not required
- complete selection process prior to single prime RfP

A NASA Origins Program Mission

Science Instrument **Procurement Process**

NGST

A NASA Origins Program Mission

Instrument Acquisition Timeline

ISIM Milestones				Year	Month	NGST	ISIM	NGST Milestones		
NRA 1: Concept Studies	NRA 1			1998	6	Pre-A	Pre-A			
·					7					
	-				8					
	-				9					
	_				10			SRB 2		
					11					
	-				12			Science PNAR		
	-			1999	1					
	-				2					
					3	А				
	_				4					
					5					
	-				6					
Concept Selection: JSRB					7		А			
·	JSRB				8					
					9					
NRA 2: Instrument Technologies	NRA 2	Specs	Interface		10					
					11					
					12					
				2000	1					
					2					
Procurement Specifications					3					
					4					
ESA Instrument Commitment					5					
					6		В			
ISIM Interface Definition					7					
					8					
AO Draft Release: Instruments & SWG					9	В		PNAR		
					10					
AO Release		AO Solic	itation		11					
					12					
Proposals Due				2001	1					
					2					
					3					
Instrument & SWG Selection Complete					4			Single Prime Select		
					5					
					6					
					7					
					8					
					9					
					10					
					11					
					12					
						on going	on going			

Instrument Module Procurement: Critical Path Milestones

- 1. Concept Studies: 6/98 6/99 (currently in progress)
 - US and European community concept studies: ongoing through 6/99.
 - GSFC baseline ISIM system design study: ongoing through FY99.
 - ESA ISIM system design study: ongoing through 8/99.
- 2. Concept Review: 7/99 9/99
 - Joint NASA/ESA Science Review Board (JSRB) selects science floor instrument concepts and prioritizes optional instrument concepts.
 - HQ selects concept suite for solicitation
- 3. Flight Instrument Procurement: 3/00 4/01
 - Procurement specifications for JSRB selected concepts completed 3/00
 - NASA/ESA procurement responsibilities defined: 5/00
 - ESA instrument committed and excluded from NASA solicitation.
 - ISIM interface definition: 7/00
 - Flight instrument call for proposals draft release: 9/00
 - Flight instrument call for proposals: 11/00
 - Flight instrument proposals due: 1/01
 - NASA and ESA flight instrument selection complete: 4/01

A NASA Origins Program Mission

JSRB Function

- Advisory to NASA HQ
- Select generic design concepts for instruments that enable the NGST floor science capability.
 - wide field imaging and spectroscopy over 0.6 5 microns
 - diffraction limited angular resolution at 2 microns
 - Zodiacal background limited sensitivity
- Prioritize generic design concepts for optional instruments that extend NGST science capability beyond the floor goals.
 - study inputs include cost estimate
- HQ selecting official approves instrument concept suite to move forward for procurment via AO.

A NASA Origins Program Mission

JSRB Function (continued)

- JSRB reports on generic design concepts only.
 - for example:
 - spectroscopy via: Fourier transform imaging vs micro-mirror MOS.
- NRA study reports describing implementation of specific design concepts will be provided as input.
 - JSRB selection of a generic concept does not constitute selection of these specific designs or the teams that produced them.
 - Design study reports are the proprietary property of the authors and will be treated as competition sensitive through the final AO process.
- Concepts that are not recommended for enabling the science floor may be recommended as optional instruments.

A NASA Origins Program Mission

Instrument Module Procurement: Other Schedule Items

- Enabling Technologies and Modeling Studies: 10/99 10/00
 - Schedule place holder NRA for community studies focusing on enabling technologies and performance modeling for JSRB selected instrument concepts.
- Top level OTA and ISIM thermal requirements flow down complete 7/00
 - trade closure enabled by JSRB selection 6 months prior
 - required for prime down select
- Flight SWG AO coupled with instrument NRA
 - selects SWG scientists not affiliated with instrument teams
 - Flight SWG selection 4/01
 - science leadership team in place ~ 1 year before NAR
 - SWG AO scientists, SI Pls, STScl & GSFC PS team

A NASA Origins Program Mission

Greenhouse: Oct 98

ISIM-9

US Community Instrument Concept Studies

Solicited from external community via NRA with NASA HQ peer review Six teams, selected during Jun 98, 1 year performance period

- J. Bechtold, T. Greene: U. of Arizona & Lockheed Martin Corp.
 - 0.3 40 micron imaging, spectroscopy, and ISIM layout
- J. Graham: U. of California & ITT Industries & Lawrence Livermore Labs
 - 1 15 micron Fourier transform imaging spectroscopy
- J. MacKenty: STScl/ Ball Aerospace/ GSFC
 - 1 5 micron multi-object spectroscopy with MEMS micro-mirrors
- H. Moseley: GSFC
 - MEMS micro-shutter aperture control for multi-object spectroscopy
- G. Serabyn: JPL
 - 5 28 micron camera/spectrometer and Sorption cryo-cooler
- J. Trauger: JPL
 - 5 30 micron high contrast coronagraph with deformable mirror

A NASA Origins Program Mission

CSA Instrument Concept Studies

- Develop and prototype SI subsystems
- Three PIs Selected by CSA
- Studies to be completed by June 99, and involve international collaboration
 - S. Morris (HIA): Integral Field Spectroscopy
 - D. Crampton (HIA): Multi-Object and Integral Field Spectroscopy
 - P. Hickson (UBC): Optical Imagery

A NASA Origins Program Mission

ESA Instrument Concept Studies

- Consortium selected by ESA to perform a trade study of integral field and multi-object spectrograph options
- A detailed design study will be performed on one option.
 - O. Le Fevre (PI), LAS, Marseille, France
 - R. Bacon, Observatoire de Lyon, France
 - R. Davies, Durham University, UK
 - R.S. Ellis, Cambridge University, UK
 - G. Monnet, European Southern Observatory, Garching, Germany
 - N. Thatte, MPE, Garching, Germany
 - T. de Zeeuw, Leiden Observatory, the Netherlands
- Details will appear on: http://www.astrsp-mrs.fr/www/ngst2.html

A NASA Origins Program Mission

GSFC Baseline ISIM Design Study

Study goals:

- Demonstrate mission science feasibility,
- Assess ISIM engineering and cost feasibility,
- Identify ISIM technology challenge areas,
- Define ISIM interfaces ,
- Enable smart customer procurement of the ISIM.

Architecture constraints:

- Integration with the "Yardstick" and other NGST 8 m architectures that are intended for packaging in an EELV or Ariane 5 meter class fairing.
- Ongoing progress can be monitored via the NGST web site: http://ngst.gsfc.nasa.gov/

A NASA Origins Program Mission

Baseline ISIM design evolution

- 1996
 - single integrated instrument
 - top level concept only
- 1998
 - modular instrument
 - detailed engineering model
 - opto-mechanical layout
 - thermal constraints
 - OTA constraints
 - package volume constraints

A NASA Origins Program Mission

NGST 8m: EELV Medium 5m Fairing

A NASA Origins Program Mission

ISIM Baseline Science Instruments

Instrument	Wavelength	Bandwidth	FPA	Pixel Pitch	Plate Scale	Aperture Control
	(µm)				(10 ⁻³ arc-sec)	(arc-min)
Near-IR Camera (1 of 4 ¹)	0.6 - 5.3	R = 2.5 fixed filters R = 50,200 tunable filters	4096 x 4096	27	29	quad-beam divider: four 2 x 2 fields coronagraph mask ²
Near-IR Spectrometer	0.6 - 5.3	R = 300, 3000 gratings	4096 x 4096	27	100	reflective slit mask: 2048 x 2048 micro-mirror array, 100 µm pixels
Mid-IR Camera/Spec	5 – 28	broad-band filters grisms, cross-disperser	1024 x 1024	27	230	slit selection + 2 x 2 camera

- 1. A quad-beam divider (pyramid mirror) apportions a 4 x 4 arc-min field of view over 4 identical cameras.
- 2. Holes in pyramid mirror facets used to form simple coronagraph.

A NASA Origins Program Mission

OTA and ISIM System Optical Schematic

Goddard Space Flight Center

A NASA Origins Program Mission

NGST ISIM Focal Plane Layout

Goddard Space Flight Center

A NASA Origins Program Mission

RMS Wavefront Error Vs Field Position

Goddard Space Flight Center

A NASA Origins Program Mission The ISIM instruments are located in an off-axis position.

This configuration yields excellent image quality.

A NASA Origins Program Mission

The OTA tertiary mirror, deformable and fast steering mirror assemblies, and pyramid mirror integrate into the ISIM in a modular fashion.

A NASA Origins Program Mission

Near-IR Wide Field Camera Optical Schematic

Goddard Space Flight Center

NGST

A NASA Origins Program Mission

Near-IR Wide Field Camera Optical Schematic

Goddard Space Flight Center

NGST

A NASA Origins Program Mission

A NASA Origins Program Mission

The ISIM near-infrared wide field camera employs a pyramid beam divider to apportion a 16 square arc-min field of view over four identical camera modules. Each module utilizes a 4096 x 4096 focal plane array covering 4 square arc-min.

A NASA Origins Program Mission

Each camera channel includes a focusing Offner relay, filter wheel, and retractable tunable filter.

A NASA Origins Program Mission

Near-infrared camera module with solid model beams.

Demonstrator Unit for Low Order Cryogenic Etalon (DULCE)

- Prototype tunable filter for NGST wide field imagery at 50 < R < 200
- Under development by GSFC and Northrop Grumman Corp
- ~ 100 K in CY 98 funded by GSFC DDF and RTOPs

A NASA Origins

Program Mission

DULCE Technology Challenge Areas

- Low phase dispersion, low absorption dielectric mirror coatings for 1-5 microns
- Long stroke nm precision actuators for 30K operation
- Sub-micron gap etalon assembly for 30K operation
- High precision position servo control

A NASA Origins Program Mission

Mid-IR Camera/Spectrometer Optical Schematic

Goddard Space Flight Center

NGST

A NASA Origins Program Mission

A NASA Origins Program Mission

The mid-infrared camera/spectrometer module utilizes a 1024 x 1024 focal plane array and contains selectable slits, filters, and cross-dispersed grisms.

A NASA Origins Program Mission

Mid-infrared camera/spectrometer module with solid model beams.

A NASA Origins Program Mission

The near-ir camera and mid-ir camera modules integrate into the ISIM in a modular fashion. Near-ir spectrometer not shown.

Near-IR Micro-Mirror Array Spectrometer Optical Schematic

MMA

Goddard Space Flight Center

NGST

A NASA Origins Program Mission

A NASA Origins Program Mission

A NASA Origins Program Mission

A NASA Origins Program Mission

MEMS Sensor Optics

Cryogenic Micro-Mirror Arrays for Multi-Object Spectroscopy

- GSFC all aluminum design
 - prototype development started Jan 98
- Sandia National Labs all silicon design
 - prototype development to start Oct 98
- 30 K operating temperature
- 100 micron pixel pitch
- surface micro-machining
- low voltage electrostatic actuation
- scalability goal: 2048 x 2048

STScI NGST-MOS Study

A NASA Origins Program Mission

Greenhouse: Oct 98

ISIM-37

Performance Exhibited By Current Detectors Is Near NGST Goals

Goddard Space Flight Center

	QE	Read Noise	Dark Current
		(e) multiple read	(e/s)
Alladin InSb	0.8	15	0.1
Near-IR goal	0.8	3	0.02
Current Si:As	0.5	8	10
Mid-IR goal	0.5	3	1

NGST

A NASA Origins Program Mission

4096 x 4096 Near-IR FPA Assemblies

Goddard Space Flight Center

A NASA Origins Program Mission

Goddard Space Flight Center

Near-IR Quad-Camera FOV

NGST

A NASA Origins Program Mission

Detector Technology Development

- Five technology development grants issued by NGST
- Near-ir 0.6 5 um
 - Raytheon IRCoE & University of Rochester
 - 1024 x 1024 InSb, buttable to 4k mosaic, 30K operation
 - Rockwell Science Center & University of Hawaii
 - 2048 x 2048 HgCdTe and Si p-i-n diodes, buttable to 4k mosaic, 30K operation

ISIM-41

- Mid-ir
 - Raytheon IRCoE & NASA ARC & Cornell University
 - 512 x 512 Si:As, buttable to 1k mosaic, 6-8K operation, 5-28 um
 - Boeing Research & Technology Center
 - Si:Ga, 1k mosaic, 10-12K operation, 5-18 um
 - Rockwell Science Center & University of Rochester
 - HgCdTe, 25-30K operation, 5-10 um
- Funded by Ball Aerospace:
 - Raytheon IRCoE
 - 2048 x 2048 ROIC for InSb, low projected power dissipation

A NASA Origins Program Mission

ISIM Cooling Requirements

ISIM optical bench temperature as a function of thermal background power relative to the Zodiacal light at various wavelengths.

A NASA Origins Program Mission

Goddard Space Flight Center

NGST

A NASA Origins Program Mission

Thermal Radiator Configuration

Goddard Space Flight Center

ST

A NASA Origins Program Mission

NGST ISIM Top Level Heat Map

ISIM Cooler Requirements

- Cooler required to enable any of the following design options:
 - warm (> 40 K) OTA
 - mid-infrared (> 5 micron) sensing with Si:As detectors
 - optical sensing with CCD detectors
- Exact requirements depend on options and involve two temperature regimes:
 - 0.6 watts of cooling at 25 K
 - 0.01 watts of cooling at 6 K
- Turbo-Brayton cooler technology developed by Creare Inc provide one of several solution paths

A NASA Origins Program Mission

Creare Miniature Turbo-Brayton Cooler

Goddard Space Flight Center

Key Features

- Vibration Free
- Robust gas bearings ensure long life
- Low mass, highly efficient, easy to integrate
- Ideal for use with radiatively cooled heat sink

Status

- 5 watt, 65 Kelvin engineering model has demonstrated long life
 - 70 K flight cooler produced for HST NICMOS
- 1 watt 35 K cooler demonstrated for the Air Force Research Lab

NGST Technology Development Goal

25K/ 6 K two stage demonstration cooler on life test by FY01

Funding

Current development funded by NASA Cross Enterprise Technology

ISIM-46

- FY98: \$525K, FY99: \$1,075K, FY00: 1,535K
- NGST investment required in FY00 to meet goal

A NASA Origins Program Mission

Grass Roots Cost Estimate

- Independent of previous estimates
- Detailed estimate using GSFC grass roots costing system
 - Formulation and Implementation Phase (A,B,C,D,)
- Basis of Estimate
 - ISIM designed, constructed, qualified by GSFC and delivered to Prime Contractor as GFE
 - realistic mix of CS and contract labor assumed
 - SI modules designed, constructed, qualified by external SI teams and delivered to GSFC for integration into ISIM
 - average aerospace contractor rate assumed
 - derived from current Ball, TRW, and LM contracts
 - both engineering and science labor force included

A NASA Origins Program Mission

Grass Roots Cost Estimate

Goddard Space Flight Center

WBS (Note 4)	Element	А	В	C/D	Launch	Total RY \$K	Total FY96 \$K
1.0	Management	585	1,306	2,743	740	5,374	4503
2.0	Science	889	3,164	11,936	3,962	19,952	15,775
3.0	Systems	571	1,774	3,406	467	6,219	5,138
4.0	SR&QA	302	942	2,202	597	4,043	3,408
5.0	Structure	420	4,737	26,905	764	32,827	26,184
6.0	Optics	0	9,467	27,161	789	37,417	30,061
7.0 (incomplete: note 1)	Electronics	372	1,860	14,645	599	17,476	14,337
8.0	Operations	0	0	0	0		-
9.0	Thermal	297	1,361	2,567	561	4,786	3,911
10.0 (incomplete: note 2)	Software	0	0	0	0		-
11.0	Detectors	266	18,916	23,095	72	42,349	34,918
12 (Note 3)	Cryo-cooler	15	305	9,735	968	11,023	8,572
Total Real Year \$K		3,718	43,833	124,396	9,519	181,465	
Total FY96 \$K		3,365	37,459	98,845	7,139		146,808

NGST

Notes

- 1. flight science processor
- 2. flight software
- 3. 25/6K two stage fully redundant
- 4. I&T distributed throughout

A NASA Origins Program Mission

Grass Roots Cost Estimate

Module	Α	В	C/D	Launch	Total RY \$K	Total FY96 \$K
ISIM Integrator (incomplete: notes 1,2)	1,194	6,245	39,915	4,274	51,628	41,954
NIRCAM (incomplete: note 2)	1,064	19,287	39,014	1,751	61,117	49,635
NIRSPEC (incomplete: notes 2,3)	720	8,835	22,659	1,836	34,050	27,323
MIRCAM (incomplete: note 2)	740	9,466	22,884	1,658	34,749	27,896
Total Real Year \$K	3,718	43,833	124,473	9,519	181,544	
Total FY96 \$K	3,365	37,459	98,845	7,139		146,808

Notes

- 1. flight science processor
- 2. flight software
- 3. micro-mirror array

A NASA Origins Program Mission

Cost Comparisons

WBS Element	GSFC ISIM 98	GSFC CAN 96	ISIM98 - CAN	Company A	ISIM98 - A	Company B	ISIM98 - B
Management	4503	0	4,503				
Science	15,775	4,500	11,275				
Systems	5,138	NA					
SR&QA	3,408	NA					
Structure	26,184	18,700	7,484				
Optics	30,061	8,600	21,461				
Electronics	14,337	13,200	1,137				
Operations	pending	0					
Thermal	3,911	0	3,911				
Software	pending	5,800					
Detectors	34,918	40,900	-5,982				
Cryo-cooler	8,572	2,600	5,972				
I&T	distributed	14,300					
Design	NA	NA					
F&A	NA	NA					
matls/S/C/ODC	NA	NA					
Total FY96 \$K	146,808	108,600	38,208				
FY96 w/o Science	131,033						

A NASA Origins Program Mission

FY98 accomplishments

- modular opto-mechanical layout solution
- accurate thermal model
- realistic design layout
 - technical budget assessment: volume, mass, power
 - grass roots cost estimate
 - ISIM requirements on OTA and SSM
- provide engineering context for NRA, ESA, and CSA studies

A NASA Origins Program

Mission

FY99 goals

- development schedule
 - for ISIM
 - for FPAs and other technology development components
- SI and OTA interface definitions
- structural analysis
 - concept validation
 - material trade
- confirm ISIM volume requirement
 - thermal mechanical layout
 - scattered light analysis
- develop synergism with NRA, ESA, and Prime Contractor study teams

A NASA Origins Program Mission